
OSI UK User Group Newslette
Vol.1 No.3 June 1980

..... bw:,

:

,

Documentation D BASIC program execution D List sorting
Firmware design o OEM ideas o and much other information

Editorial

Back again I with a more general issue this time: a lively miscellany of comments and
ideas on do cumentation and practical solutions and problems, for both BASIC-in
ROM and disc systems. We've no 'main item' this issue, butbut there should be
something for everyon e. And if not - it's up to you to provide it! If you have done
something or discovered something, and it's not in either the 'manuals' or in this
Newsletter, we almost certainly don't know it. So tell us - we are learning as much
as anyone, we aren't omniscient, and we do need help and information from
everyone in order to help everyone . (And many thanks, of course, to those
members who have helped so far!) When all is said and done, this is your Newsletter .
A change of format
There is one format change in this issue: we've moved the User Group Not es and
Dealer Notes from the end, to the middle four pages. Their information tends to b
impermanent, so we thought you'd prefer to have it as a pull -o ut section that you
can remove if you no longer want it.

Developments
As can be seen in this issue's Dea/er Notes, the number of dealers and software
support services seems to be expanding - a good sign for us all, giving us more
choice and, we would hop e, mor e local service. OSl's own range Is expanding too,
with the new version of the old Challenger 2, the C4, not merely promised but here;
and with smaller hard -disc systems (the C2-D and C3-D) and a new version of the C1
known to be on the way. There 11 also a comp lete new range of experimenter's
boards, the CA-20 series, most of wh ich will opera te either internally, plugged into
the OSI bus, and/or externa lly, as 'remotes'. The published range includes PIA
boards (a new version of the reliable CA-12 board) , high-speed analogue-digital
interfaces, a multi -fun ction real-time clock, the AC control system, and an
'experimenter's Interface board' with LEDs, switches and a large solderless bread
board - a very useful range, and at very good prices.

Aii in all, a worthwhil e range of systems and peripherals . And if OSl's New
Business Manag er, James A. Pike, can be believed, it does look as though OSI really
are going to take the UK market seriously at last.

Documentation corner

CLEARer thoughts
The sad saga of the unclear CLEAR continues. Richard Elen writes: We've made a
few discoveries about the OSI BASIC's CLEAR command since the last issue's note.
After you've called CLEAR, you can redimension arrays without invoking a DD
ERROR. But if you so much as mention an array element after CLEAR but befor e re
dimensioning, you will get the DD ERROR when you redimension, because callln
an array element in an undimensioned array automatically dimensions It at th
default value of 10. If you use, CLEAR, check that you don't call any array variable
until you have redimensioned.

Dave Caine adds: CLEAR seems not only to reset all variables, strings and arrays -
it also destroys any DEFs you may have set up (guess how I knowl) and if you use it
within a GOSUB, the program won't know where to RETURN to (presumably

applies to FOR:NEXT also?). Where on earth could CLEAR be useful? I'm totally
baffled and my only suggestion is that it could be used to allow utility routines which
may be required to run either individually or chained or after a run of the main
program they're working on, but permitting them to use non-unique array or
function names.

Any ideas, anyone?

NULL
NULL currently appears to be the main contenoer for the title of 'most useless OSI
BASIC command'. NULL simply POKEs the null-counter (1310 in BASIC-in-ROM
systems) with the number after the NULL command (i.e. NULL 3). This allows delays
for interfacing with relatively slow devices, such as for the delay a bufferless printer
needs during its carriage-return cycle. The catch is that greater than 10 after NULL
generates an FC (fun ct ion-ca ll) error - although 255 is allowed! - which rather
limits things for people designing high-speed cassette interfaces and the like. In
practice , ignore NULL; use POKEs Instead, they're simpler!

INPUT and null entries
As most readers will have discovered, typing a CR as the sole response to an INPUT
statement in OSl's BASIC results in an apparent crash - the ominous letters 'OK'
appearing, to imply that all is not OK!

Users of disc systems will know that OS-65D and -65U have POKE locations that
disable this, allowing a CR response to be treated as a null string or zero value
instead. There is no equivalent 'disable' in BASIC-in-ROM. However , the INPUt
routine does look specifically for the CR (as a null at the beginning of the buffer),
and stores the current line-number where CONT can find it, before returning to the
warm-start routine. Thus, as UK101 users will know, but OSI users will not, CONT
after the apparent crash restarts execution at the beginning of (and not after) the
relevant INPUT statement, allowing the normal run of the program to be resumed
without any real interruption. Normal CONT rules apply: you can print the value of
any variable, UST the program or whatever, but any change to the program itself will
result in a CN (continue not allowed) error and true program crash to be issued.

FOR:NEXT loops
OSI don't tell you, but there are shorthand ways of describing the NEXT in nested
FOR:NEXT loops that end together . NEXT X: NEXT Y: NEXT Z may be stated more
simply as NEXT X, Y, Z; or even as NEXT: NEXT: NEXT (since, for speed, BASIC does
not -check the variable name, but simply returns to the previous apparent FOR in the
nested set) - but, for reasons of legibility and proper documentation, this isn't
recommended .

PRINT AT on C2 systems
A limited two-line PRINT AT is available on C2 systems, because the start-location
stored in 51210 is not zero, as on C1s, but 64, 4016 •

On C2s, POKE 512,0 allows PRINTing on the tine above the normal line: useful for
headings for normal lines of the PRINT; format. A CR (carriage return) forces the
value of 512 back to 64. Any value up to 127 is allowed - above that, the system
forces a CR on receipt of the first character, so this PRINT AT will not work on lines
below the normal line.

The same arguments apply to the C1: the line above cannot be reached because
the counter cannot take a negative number; and the lines below cannot be reached
because a CR Is for ce d. The principle of POKEing 512 could be used within the
normal line, but It Is slmpl er to use TAB statements!

> and<
The rece nt Issues of Aardvark's cata log ue have a brief note on this and on the other
use s of AND, NOT, and OR.

if > or < are used inin the rorm (A > X) the fun ct io n return s the logical value rather
th an th e arit hmetic one : •1 If truo (A 11 greater than X), O If false (A is equal to or less
th an X). This wou ld be usefu l for certain types of game work, wh e re the comp arison
could for ce a CiOSUB, throua h a form, like ON IA > X) + 2 GOSUB 1000, 2000.

IF and NOT
As a result of th e loglca l comp11rlsons of > any < above the IF and NOT statements
can work with out any =n sub-statement. For example·
IF A THEN ... checks for a 'not-fa lse' condition;

It is thu s equiv alent to IF A <> O THEN .. .
IF NOT A THEN .. . chec ks for a 'not-true' value , i.e. not -1;

it is thus equivalent to IF A <> -1 THEN .. .
The two functions are normally used for checking flags; but IF A ... is also useful for
checking if A has any non-zero value.

AND and OR
There is the briefest of mentions in the OSI BASIC 'manual' that AND and OR can be
used for 'bitwise' arithmetical operations as well as logical comparisons of the type
IF (A AND B) = 0 OR (A AND C) = 1 THEN But the two functions arrive at their
logical true/false values by bitwise comparisons, which can be used arithmetically
instead . If you don't know how these work, look it up in a book on assembly
language programming, such as Leventhal's 6502 Assembly Language Programming
(Osborne/McGraw-Hill) - not Zaks' Programming the 6502 (Sybex), since he
assumes that you already know! An, AND comparison returns a value only if the
relevant bits are set on both the comparator and the compared values -thus, as far
as BASIC is concerned, 64 AND 32 equals 0, while 24 AND 15 gives 8 (bit 3 is set in
each case here , so the 'result' is bit 3 set, i.e. 2^3or 8). ORing forces bits to be set; thus
32 OR 64 gives 96, but% OR 32 leaves % unchanged (since bit 5, 2^5is already set).
The function we do not have in this BASIC is EOR, exclusive OR, which clears bits if
set, and sets bits if clear - this is available, though , on the 19K Altair BASIC used in
OSl 's version of CP/M.

David Cannon comments that the Microsoft BASIC appears to be very lax in
interpreting logical and relational operators . In principle there is a definite order of
priority in which these are done, as given in the manual; but even so, he says, It
seems to be essential to use copious brackets to ensure correct opera tio n. For
example:
IF THISDAY = WEEKDAY AND TIME= 9 THEN GOTO sleep? has to be written as:
IF (THISDAY = WEEKDAY) AND (TIME= 9) THEN do whatev er.

The important point here is to watch the order of prioriti es wh en using O R and
AND - in principle at least, they are evaluated after = op e ration s, not befor e. So,
again in principle, David's example should evaluate corr ectly without brackets ; but

something A = I AND 1 may well result with A equalling I (by evaluating the= and
'losing' the AND by ending th e implied LET), rather than returning either 1 or O if I
was odd or even respectiv e ly.

Double-spaced lines
Most people will know this by no w, but in case you don't: you can double-space
the lines of print output (i.e. insert a blan k line between each printed line) by a
POKE 15,0 (set the apparen t terml nal widt h to ze ro) .

LIST formats
Again , most people should know this, but it does cause some confusion.
LIST 100 lists line 100 o nly; prints a blank If line 100 doesn 't exist .
LIST -100 lists all lines up to and Including llne 100.
LIST 100-200 lists all lines from line 100 to line 200 inclusive.
LIST 100- lists all lines from line 100 to the end of the program .
LIST lists all lines.
During a SAVE, this allows you to 11st (and therefore save) only part of a program ,
such as a set of DATA lines; or e lse save on ly the working pro gram if you have any
utility programs , for exa mple, using higher llne numbers, which you will not want to
save along with the working progr am.

: and , as delimiters in INPUT statements
Jack Pike set us a problem which so far we have not been able to solve - howto trick
BASIC into accepting commas and colons in INPUT without losing everything which
follows them (followed by that nasty message ' EXTRA IGNORED'). This is easy in disc
BASIC, since the delimiters can be changed in RAM; but it's not so easy in ROM.

Because the program is in ROM , we cannot change the delimiters to something
that we know is not going to be used in normal text(% or[, for example)-we have
to use the program as it stands , which almost certainly means writing a USR routine
to do mu,:h the same job . Studying the disassembly shows us where the : and , are in
the routine: the INPUT routine starts at A923 , jumps over part of the READ (routine,
and picks up these two delimiters (along with ") at A98E onward. The : is stored in 58,
the, stored in 5C. (This all assum es tha t the INPUT is for a string - this is set by a BIT
$SF, where the top bit is set high if a string input) . The routine then goes through
three more subroutine s, B0B4 (which I think assesses the length of the input string),
B3F3 and A7D5 , before jumpin g back into a later part of the INPUT routine atA9B6 .
It' s going to be a long job to sort this one out , but it's going to be extremely
important for the word-pro cessor write rs amongst us. Any takers?

Fast screen clear
I was taken to task by David Caine for my commer, c that the Aardvark fast screen
clear described last issue scrolled the scree n. It appears to, but in fact does not;
instead, as Dave pointed out , BASIC is tri cked into thinking that the screen is string
storage space , and stores strings of spaces th e re. Thus all that is needed is to ensure
that the string-length (of spaces, or whatever) multiplied by the FOR:NEXT count is
just a little bigger than th e scree n memory - 1024 bytes on the C1, 2048 on the C2.
65 * 32, as given by th e routin e listed in th e last issue , gives 2080; but 59 * 35, as Dave
pointed out, gives an adequate 2065, and gets round the problem of fitting the
whole string of spaces and its 'supports ' into one program line. C1 users can shorten

the FOR:NEXT loop, of course, to half that needed for the C2; and the routine
applies only to memory ~mapped systems, not serial terminals as on the larger C2
and C3 systems. For th ese, however, Ve/vet Software (see Dealer Notes) pointed out
that PRINT SPC(0); SPC(O): PRINT scrolls the screen up faster than normal.

RNO(X)
Ray Fox writes:
RND. In OSl 's BASIC this Is unnecessary as each ti me a program is RUN, RND(X) with
the same X generates the same sequence of numbers but starting with a different
numb er each time. If however the requirement Is for the same sequence of random
numb ers starting w ith the same. number each (RUN) very helpful in deb ugging
progr ams) then a statement llke Z = RND(•V) must be Inserted atthe beglnn on
th e program. Z Is a dummy variab le. For the snme Y.the numbers wlll start w l
same numb er each RUN. Changing Y will change the starting point In the sequence

(Ed.) Someon e sent me a sup erb piece on th e machine-code aspect of RND, and
expl ained why it would not co mpl etely fill a C2's screen -t he repeat cycle for any
given number is only 1836 ' random ' numbers! But I have, of cours e, lost the
notes . .. so would whoever it was write to me again, please!

Input buffer length
Another garbled piece of OSI documentation confused me and several others
about the length of the input buffer. On BASIC-in-ROM systems, POKEing 15 with a
value sets the terminal width to that value (the equ ivalent location is 23 in OS-65D
disc BASIC). But this does not alter the length of the input buffer: the maximum line
length as far as a typed line is concerned is always 72characters. This is built in to the
limitations of all Microsoft's small BASICs (but not its big ones - the C3 CP /M
BASIC has a user-defined buffer), since it is an allocated hole, in this case, in the
6502's all-important zero-page . (The Apple Integer BASIC is not by Microsoft, and
uses another rather larger area of memory instead).

Ray Fox writes on this po int : As detailed in the first Newsletter, location 1510 sets
the terminal width, for auto CR/LF. Values greater than 72 make no difference to the
maximum length of line that can be typed in BASIC; the length of 72 here
presumably being limited by the size ol the input buffer. However , any value up to
255 inclusive does affect the maximum length of line that can be PRINTed to the
screen, and of course to a printer if fitted. Lines longer than 72 characters can of
course be PRINTed by PRINT statements separated by ';' or PRINTingthe result of a
string 'addition '.

An assortment of functions
Amongst a vast quantity of notes and comments from Matthew Soar were the
following two sets of BASIC functions. (If any other members have sets of useful
functions like these, please send them in).
Justification :
T AB(x) statements align numbers on the blank spaoe or sign that precedes the loft
hand (highest) digit .
To align on the decimal point , use PRINT TAB(Y+ FNP(N)); N --where FNP(N) Is:
DEF FNP(X)= - LEN(STR$(INT(X))-(ABS(X)<1)
To align numbers on the right, use PRINT TAB(Y+FNR(N));N -where FNR(N) is:
DEF FNR(X)= 1- LEN(STR$(X))

'Bit-twiddling'
Nibble function s, wher e A is t he value of t he byte , and N the value of the relevant
nibble:
FNH(N)=INT(A/16) - reads high nibb le (upper four bits)
FNL(N)=(A AND 15) - reads low nibb le
FNA(N)=16*N + FNL(N) - sets upper nibb le to N
FNB(N)=FNH(N)+N - sets lower nibb le to N.
Nibble functions are useful fo r packing and unpa cking decimal digits, two to a byte.
Bit functions: where N is th e bit number of th e required bit (0-7):
FNQ(N)=INT(A/2^N)-2*INT(A/2^(N+1))
FNR(N) =A-FNQ(N)*2^N
FNS(N) = A+(1-FNQ(N))*2^N
F NT (N) = FNR(N) + FNS(N)- A
Respectively , these: read the Nth bit; clears bit N (sets Nth bit to zero) ; sets the Nth
bit to 'one' ; and togg les the Nth bit (clears If set, sets if clear) .

Machine-code save In BASIC
Several people wrot e in to comment on the reason why th e Aardvark machine-code
save (published last issue) do esn't work - it could be said to be a case of 'spot the
deliberate mistake '? The error was that regardl ess of how wide the terminal width is
set, the forced . CR eventually generated will screw up th e save by adding an extra
apparent memory byte (as far as the subsequent load is concerned), throwing
everything up one byte further than it should be, and leaving a 'gap' repeating the
previous memory byte before the CR - guaranteed program crash! The solution, as
everyone pointed out, is to reset the other counter - the 'characters since last CR'
counter , 1410 - between each hex pair , so no extraneous CR is ever forced. Thus:
delete the existing line 10 shown in the version printed in the last issue, and insert
145 POKE 14,0.

C1/Superboard and UK101
We now have a fair number of members with UK101 (because the 'official' user's
group for 101s appears to have died); and well over half of our members have
Superboards or C1s. But at the moment we (in other words Tom Graves, Richard
Elen and George Chkiantz) have none of these machines - and this is necessarily
reflected in the applicability of some of our comments. I take the point made by G.
N. West that we ought to make every effort to ensure that information is accurate
before we print it, since that is the failing of OSI that we are complaining about . But
we cannot infer everything from a disassembly listing or a comparison on our C2s or
C3 - so would any members with C1/Superboards and/ or (especially) 101s please
help us in the documentation work where it relates to their machines, by testing out
ideas as they arrive? Get in touch with us as soon as practicable if you're interested in
this ... many thanks!

List sorting
using ROM BASIC's machine-code

I have just stumbled on a novel use of the BASIC RO Ms to generate ordered lists and
save them on tape in a useful format for input to other programs. I am using it to
create source tapes In assembly lang uag e for a prototype two-pass Assembler, but it
could also be used to supply a list of cheq ues for a home-made accounts program,
or any other application where It is necessary or des irable to edit the data before
committing it to tape .

My problem was to be ab le to store quite a lot of informat ion, in the correct order
(i.e. not the order I first think of It lnl), and be ab le to edit and delete items at will
before finally saving the data on tape , with a suitab le de lay between each item to
allow for processing by the recipient program . After considerab le 'boning up ' on
linked lists, trees and the like, it sudd enly occurred to me that wh at I wanted was
exactly the faci lities offered by th e BASIC ROM s when typing in a program, editing
and saving it on tap e.

A quick check confirmed that , so long as each statement began with a numb er
and followed this with a non-numeric character, BASIC took no notice of what the
line contained and happily stored it away, to be listed, altered, deleted , or whatever.
And of course , SAVE followed by LIST would put it all on tape in the right order , and I
could use the NULL command to precede each line with a sufficient number of nulls
to allow processing of the previous line (NULL 255 or POKE 13, 255 gives almost 20
seconds delay at standard cassette speed!).

By this time thoroughly pleased with myself, I made up a short data tape, loaded
my assembler, waited for the input prompt and played back the tape. BASIC isn't
tricked that easily though; as soon as the listing began , the Monitor jumped out of
my program and loaded the tape as if it were a program, overwriting my assembler
in the process! A little experimenting and listening to the tape showed that there are
characters preceding the first line which are not printed on the screen , but which
obviously tell the monitor to expect a new program. Starting the tape at the
beginning of the second line of data was successful and I was rewarded by the sight
of a string of machine code instructions as the program decoded the assembly
language mnemonics.

To get around this problem I now, having got together my data as dummy BASIC
lines, insert an extra line at the top of the list, such as 10 XXXX, type NULL255 (or
whatever) , SAVE, LIST, and as soon as the cursor returns after printing the X's, start
recording . This results in a usable data tape beginning with a string of nulls then the
first line of data.

Using the data is quite easy. Arrange for the program to include , near the start, a
few lines such as:

110 POKE 515, 255
120 INPUT X$
130 POKE 515, 0

If the line number is not required, a simple search along the string via an I
MID$(X$,l,1)= " "will locate the first space after the line number (wh ich BASIC puts
in if you forget to do it yourself) and the line number can be del eted by THEN X$ =
MID$(X$,1+ 1), but I keep and use the line number to identify the locatio n of
assembly errors.

t

•

Make up the data tape, load up your program and type RUN but not >RETURN<.
Play back the tape until you hear the beginning of the string of nulls then press
> RETURN< , so that the INPUT statement receives nulls as soon as it looks at the
cassette port. Failure to do this mea ns a strea m of meaningless characters (with a lot
of a's) and, unless you're lucky, a cras hed program or even system. With these
precautions the method has so far been 100% reliable. By the way, the 'OK' at the
end of the listing can be used to good effect to terminate your program at the end of
the data by adding 140 IF X$="0K" THEN END to the listing given above.

One final tip : before typing NEW to erase the data you have just saved, save it
again but without the nulls. That way you can load it back quickly later on if (or in my
case, when) you find that it still contains an error. Waiting for all those extra nulls
from the data tape is extremely tediou s.

To sum up, the method enab les the creation of data files of up to 7423bytes (with
an 8K C1) with all th e norma l facilities of line editi ng normally enjoyed when
entering a BASIC program . On ce mastered, the technique is quick and easy to use,
and varying th e number of null s means that the data can be saved and loaded at any
desired spee d .

John Attwoorl

Designing new firmware for OSI systems

There is a sad little comment in the First Book of OSI that 'our thanks and
compliments go to the hardware designers at OSI - and to almost no-one else in
Ohio'. OSl's design and construction of its hardware are superb - but almost
everyth ing else is a shambles. The failings of its documentat .ion we are all only too
well aware of! The same goes for its own software -the ideas are there , but even in
the 'professional ' packages like OMS the all-important attention to .detail simply is
not there. Where OSI have 'bought-in' other people's work, from Microsoft, Digital
and others, the results are usually good - but the essential interfacing patcties are
sometimes left with bizarre loopholes: the outdated Teletype-like 'backspace' in
BASIC-in-ROM , for example, or the stupid input / output error in OSi's version of
CP /M (;vhich tries to send parall e l 1/ 0 through a serial port! - see this issue 's Disc
System Notes). Where OSI have written their own firrpware the results are as patchy
as ever: it works, after a fashion , but never quite in the way you would expect! A
good instance is the keyboard routine for polled-keyboard systems: everything
seems normal until you release Shift-lock - and then it's chaos! And who on earth
allowed the design of the software and firmware system for the BASIC-in-ROM
machines such that it can only load - but not save - its machine-code; whose
supposedly 'better' checksum load system turns out (in our experience) to be less
reliable than a straight load; and whose assembler will only dump the machine
code that it generates in a checksum format that neither it nor the ROM monitor can
read? Are OSl 's software designers just utterly stupid, or more than a little insane?

Be that as it may, it was obvious from the start that as soon as we (as organisers
the User Group) had made a reasonable start on patching up the wreckage of OSI's
documentation, our next priority must be to replace the support firmware -
particularly for the BASIC-in-ROM machines, as disc systems are somewhat
with all their . language software in RAM. We have already gone a long way with this

and have most of the routin s that we would like to use already mapped out and
asse'!'bl�d� �ut not y t link d into a whole. Before we commit ourselves to the
relative rig1d1ty of EPROM, It is essential that we ask members' opinions on what you
feel _ought to be in a n w tandard monitor ROM for the BASIC-in-ROM machines.
Da_v,d Cannon, for xampl suggested that we need: a fast screen clear; a resident
ed1tor/resequ�nc r; fool-proof cassette read/write (preferably with named files);
cass�tte machin -cod dump, to match existing loader; hex-dee and dee-hex con
versions; and l_ong r h x program listings. Our own ideas are described below:
what are your idea , your requirements?
. The main difficulty in designing an_y monitor is that of packing as much as possible
mto the limit d amou_nt _of space available -the space being limited by cost as well
as by hardwar restrictions. OSI took cost to be their main consideration and
design � their firmware in 256-byte (1-page) modules, to fit combinations for as
m�ny d1�ferent machines as possible onto the one (at that time expensive) ROM
chip. This means _a vast amount of repetition and redundancy: the C1 also has a
compl�te C2 monitor at the other end of the chip, the older serial chip has pages for
�ard:d(SC support even though it's used on a C2 (see Alan Garrett's article elsewhere
m this issue), and_ both t�e re�et and machine-code ·monitor pages have separate
screen �lear routines (using different methods), neither of which can be called as
subroutines. On the assumption that no-one would ever really want to use the full
2K monitor space, OSl's hardware designers even limited the accessible range on
t�e C� to 3 pa�es (¾K), and placed the ACIA chip to occupy the next page down,
right in the middle of the 2K range of the monitor chip. •-

The net result is that on C1/Superboard machines the whole 2K is available
whereas only 1¾ K is available on C2s. However, the 'extra' page on the C1 is needed
for the keyb

':>
ard-complement subroutin s (because the keyboard values are

inverted relative to the previous designs) and for the disc bootstrap (because
C�/S�perboards still use the BASIC-in-ROM under the Pico-DOS system, and thus
will still �eed extended monitor facilities in ROM). A sensible use of resources, and
a ten-m_mute hardware mo� on the C2, frees 1 ¾ K on each type of machine to do
�ve_r�thmg else we nee�. Given that we can remove much of the duplication with
JUd1c1ous use of su�routmes, we are stil! tightly limited by what we have to do in that
space-. and 1¾K 1s not all that much of a space in 6502 code.

If �oss1ble, we als<;> have to mai�tain compatibility with all the existing software.
That s not as_easy as 1t sounds: a brief study of the conflicting requirements of ROM
BASIC, monitor, EXMON and assembler will point out some of the difficulties. For a
s_ta�t, only BASIC recognises any kind of back-space, and BASIC's keyboard buffer is
limited to 72 �haracters stored at 001316-5(\., while the assembler's buffer starts at
0080,6 and varies in length because of a packing system used for repeat-characters.
And so on ...

We could, of course, bypass all this by replacing the lot ... ! Which would be
rather expensive, and almost ,ce�tainly a breach of copyright unless we can get it
covered by _the terms of OSI s licence. But there are a number of arguments in
favour o_f this as a long-term exercise: replacing just the first chip, from A000-A7FF,
would give us access not only to the 'editor' and most of the input/output calls from
BASIC, but also all the command and look-up tables - which would allow us to
define a new version of BASIC, perhaps even a user-definable one like Xtal BASIC
for .t�e Nascom and Sharp. This is worth thinking about; but at the moment it's
definitely a long-term proposition.

Which brings us back to the monitor, and to the realisation that, for the moment,
f

everything that we want has to be done within the one chip, and within not more
than 1¾ K. What we have to do, if w want to retain compatability with the existing
system (but see the OEM Notes elsewhere this issue) is the following:
a) provide the Reset entry, leading to Cold and Warm starts to BASIC, to the
Monitor, and to the Disc bootstrap on th C1 version (residing in the 'extra' page
FC);
b) provide the five BASIC support v or and routines (character-in, character
out, set SAVE, set LOAD, ctrl-C ch ck), nd the look-up tables for the video routine
support;
c) provide a keyboard routin to upport th haracter-in routine;
d) provide some machine-cod f llltl for th Monitor statement to jump to.

As we see it, a) must stay pr tty mu h it is - it need not necessarily be in the
same place, although th form r t rt lo ation of FF00 must still be able to call it, to
maintain compatability with th xi ting ROM. But everything else could - and, we
feel, should - be ext nd d.

Again, there are trade-off : p opl who want big extensions to BASIC, like
machine-code versions of trac , r numb r, lin -delete, search and the like, can
only have them at the expense of expansions in other directions. Our feelings at the
moment are that many of the BASIC utilities - particularly renumber and search -
are easy to implement in BASIC, but not at all easy and/or greedy in memory in
machine-code; a number of BASIC features would also demand a parser to decode
the commands, since the BASIC-in-ROM parser is inaccessible, and that too is
greedy on memory. We would thus prefer to limit the BASIC expansions to those
which are easily implemented without a parser, and to devote the remainder of the
space to things which are either infuriatingly slow in BASIC, or which can't be done
at all in BASIC- namely an editor, and a proper keyboard routine and extensions to
the machine-code monitor.

One type of editor which already works on OSI kit is the Sirius Cybernetics type
with twin cursors - this has some limitations, but it does run all the time that
keyboard input is required, without needing to be called. We have, of course, re
written the keyboard routine - it now does do what you expect! -and while, at the
moment, it is slightly larger than the existing routine, a little algoriJhm-juggling
should trim it down to the requisite size, as well as freeing its delay-routine as a
subrouti�e for use in other programs. Other routines - like screen-clear! - have
also been re-written as subroutines for use elsewhe�e. On the machine-code side,
my own experience of a Nascom 1 (which had an un-endearing habit of scrambling
memory on reset, but which had superb firmware in the T2 and T4 monitors) has
given me a pretty clear idea of what a proper machine-code monitor should have.
I've thus written a proper modify routine that allows input of both hex and ASCII; a
tabular memory display dump; hex arith routines, including relative jump;
breakpoint handler; intelligent block move; and some other routines, including (of
course) save and load. Richard Elen and George Chkiantz have written some other
extensions, like a tape-header routine for named tape files. On the BASIC-support
side, we are undoubtedly going to vector all the support routines through RAM-

•
which the C1/Superboard does at the moineRt, but which the C2 does not. This is to
allow user-defined 1/0 - which at the moment, as I know to my cost, is aim- .
impossible on the C2 series without re-writing almost the whole of BASIC! I h

· also written an easily implemented BASIC-trace (switched on by a single POKE)
am currently struggling with the one other BASIC extension I feel is essential

.

impossible to implem e nt In BASIC, namely block-delete of program lines. Other
items under consideration include ways of leaving open 'holes' for expanding the
monitor, to app end proper 'e xtended monitor' facilities like a disassembler and a
disassembling machine-co de trace; and also various experiments with a real-time
clock; and ...

But anyway, what we nee d to know, if this is to be the Group's monitor rather than
our own Indulgence, Is a clear idea of what members want of a ROM support
monitor. What we nee d to know is what you want, what you are working on or
interest ed In along these lines. Would you let us have your ideas or comments as
soon as possible - we'd like to have something to soothe some of our members'
firmware he, daches by the time the next issue comes round!

Tom Graves

The range of OSI monitors

C2 and Cl range
For those who possess a C2 or C3 machine you will most often find a SYN MON V1.0
monitor on your CPU board (I've never seen any other version, or anything else!).
However , OSI claim to produce two versions of this monitor ROM, one for video
systems (C2) and one for C3 and other serial systems. Now this may well be so, but
there are no external markings on any of our SYNMON V1.0's to show this! Anyway,
to continue:

Page
1

Contents Run-time address

2
3
4
5
6
7
8

Monitor: 540 video board , ASCII keyboard
Reset support ('C/W /M '): 540 board and ASCII keyboard
Polled keyboard routin e (542 keyboard)
Monitor: 540 board with 542 polled keyboard
Reset support ('C/W/M'): 540 board and 542 keyboard
CD74 hard -disc bootstrap
Monitor : serial systems
Reset support ('H/0 / M'f disc systems

FExx
FFxx

FDxx
FExx
FFxx

FOxx
FExx
FFxx

If you look at a 502 CPU board (C2 series) you will see a patch socket with 3 links,
from pins 1, 2, 3 to pins 12, 11, 10. These call up pages 3, 4 and 5 respectively. So far
fairly straightforward . The monitor ROM is actually addressed by separately
decoding the high address lines of addresses FDxx, FExx, FFxx, and then converting
them back to a binary address . (This is why.you have a 2K monitor but can only 'see' 3
pages of it).

On a 505 (not Rev. B) board out of a-C2-4P MF, you will find a similar patch socket,
with links from pins 1, 2, 3 to pins 12, 11, 7 (note the difference) . Hence a C2-4P MF
will display 'H/0/M ' on power, reset or break, but has the same keyboard and
monitor routines .

On a SOS (not Rey. 8) board out of a C2-OEM machine you will find the same patch
socket but with only two links, from pins 2, 3 to pins 7 and 8. This brings out an
'H/0/M' message and uses a serial monitor.

At this point a very interesting point comes to light, namely that the C2-4P MF's
505 board does not produce the 'H/0/M' message in the same way as on the C2-
OEM's 505 board , which drives a serial video system rather than a built-in 540 video •

board . This is fairly obvious and direc tly leads to the conclusion that there are two
different reset support pages produ cing 'H/ 0/M' messages; and because the
boards in question have the same page (page 8) for the reset support code linked in,
then there must be two different RO Ms: one basically intended for video systems in
which pages 1, 2, 6, 7 are not usually used ; and one for serial systems which
apparently usually use only pages 6, 7, 8 - and 6 (the hard-disc bootstrap) only on
C3s. On a 510 board from a C3 machine a similar patch socket exists with pages 6, 7, 8
of the monitor ROM select ed : this displays the 'H/0/M' message on a serial video
system.

In answer to the question 'What Is in my monitor ROM?' , we have come a fairway
towards an answer. The definitive answer will only come when someone with a little
time to spare manag es to do a disassemb ly of the whol e of the 2K monitor ROM, for
both a 540 board video system and a seria l-based syste m. Which leads to a further
question of 'How can this be done? On a ROM BASIC video system (i.e. a C2-4P) a
machine-code disassembler might be used, via the monitor , to disassemble other
monitor ROMs, perhaps placed In one of the BASIC-ROM sockets - a suggestion!
leave for those who wish to t ry th is. (I can provide a serial monitor ROM and a
monitor ROM from a video system for a day or two if anyone wants to try - contact
me at Mutek).

One final point : the two monitor ROMs, both called SYN MON V1.0- one from a
video system, the other from a serial system - must, by my argument, be different
inside; yet outside they are the same device, with the same name and pack . As ever
with OSI, confusing, isn't it! A/an Garrett

C1/Superboard
(Added afterwards by your editor!) The monitor ROM used on the C1/Superboard
series does actually have a different name(!) and contains what appears to be both a
C1 and C2 monitor -which may resolve Alan's problem, The C1's monitor set-up,
as run, contains a disc-bootstrap and keyboard -complement routines at FCxx, and
then much the same as the Cl's monitor: keyboard routine at FDxx, machine-code
'monitor ' at FExx, and reset support at FF xx. The catch is that it is not the same as the
Cl 's monitor: there are some important differences. On reset, the C1 version loads
in a table of vectors from FEFO to FEF9, for the BASIC support routines, and stores
them at 021816 upwards ; the se vectors are later called via 'JMP-indirect' (6C)
opcodes when BASIC requires the monitor 's support. The C2 version uses 'JMP
direct' (4C) opcodes for the se vectors , making user-defined input-output almost
impossible, and uses the C1 version 's vector-table space for a vague attempt at a
'GETKEY' routine . (Both versions, incidentally , have redundant Reset, IRQ and NMI
vectors at the top of the FExx page, apparently in case the page is switched for use as
page FF xx -though the monitor would not work at all under those circumstances!).
Other major differences occur in the keyboard-polling routine in page FDxx: the C2
version does a straight STA/LOX (or /LOX) sequence to look at the keyboard
switches, whilst the C1 version has to call a set of complementing routines, stored in
the 'disc bootstrap' page at the upper end of FCxx, because the keyboard switches
invert the key values as defined by the earlier 540-board system. Serial 1/0thro
the ACIA also has to be dealt with by separate routines in the 'disc-bootstrap' page
rather than within BASIC, because BASIC expects either a UART at FBxx or anA1

at FCxx, not an ACIA at FOxx! The bootstrap routines occupy the same location
ACIA that BASIC expects , of course ... which is why everything had to be re-written

'

Ii
I

to by-pass BASIC. But exactly why the C1's monitor should also have a C2 version
within it, when the C2 Is already served by the other monitor, is something of a
minor mystery - perhaps they just needed to fill the space with something. There
are also apparently two different C1 monitors, with the same contents, but different
chip-types - the board has links to support two different types of ROM.

All in all, the situation with the monitors is, as usual, a tangled mess. As explained
elsewhere, we are currently trying to re-write the monitors for the smaller systems
- any comments or ideas to help us in that direction would be most welcome!

Letter from America

User Group organiser Richard Elen was over in California on business recently, and
was able to grab a little time off to talk to people about the OSI scene over there. This
is his report ...

The end of May saw the 1980 National Computer Conference and exhibition at the
Anaheim Convention Center. The show was exceptionally large, with over nine
halls in the Center itself and two floors - housing the Personal Computer Festival -
in the nearby Disneyland Hotel.

While at the Show, I visited the OSI stand, tucked away in a corner of one of the
main halls. On show was, as one might expect, a C7, in its new-style case; a C4MF,
with an excellent set of business programs running on it; and a C2-8P with a whole
battery of add-ons, including a music program running via the DI A, a home security
system, light and appliance controllers, the works . A Votrax voice synth card told
you what was going on and the system was ably demonstrated by one of OSl's
engineers. A pair of C3s were also on hand , running a number of powerful business
systems.

I had a useful discussion with James Pike, OSl's New Business co-ordinator, about
the company's attitude to the UK market, and I'm pleased to say they seem to be
most interested in looking after us lot over here. Lines of communication between
the UK User Group and OSI are now well and truly open, and we can hope to be
kept informed with useful data.

I also visited a couple of Californian dealers/distributors, and got a chance to see
some of the new developments, notably the new 540 rev.B1 colour video card, now
being fitted to the C4. You can retrofit one to a C2, of course, and at least two people
in the UK have recently completed PAL colour conversions so we'll soon be able to
have access to all 16 colours, alphanumerics and graphics, foreground and back
ground colour. The 540 colour card allows each screen position to be set to a fore
ground and background colour: a simple command changes the entire screen
background to a chosen colour. For more details on this and other aspects of the C4
you should try to get a copy of the current issue of onComputing, McGraw-Hill's
new 'beginners' magazine. A multi-page colour review therein gives a good
appraisal of the new system. Shortly we hope to present a review of the machine for
members in the Newsletter; as many of the facilities utilise modifications to existing
boards, C2 and C3 owners should also benefit, as new boards can be obtained with
the new facilities, hopefully with some kind of trade-in deal. New lines of
communication were also opened up with regard to getting better facilities from

continues after Group Notes and Dealer Notes

User Group Notes

Join the club?
We know that several members would like to see the Group emphasising the 'club'
aspect more - arranging local meetings and the like. The main problem, as far as we
are concerned, is that we have more than enough of a job already! Clubs are
certainly a good idea, but we realise that, because we're operating on a somewhat
remote national scale, we are not really up to organising things on the local scale
that clubs really need.

So we have had a couple of members asking us if we would supply them with a list
of other members in their locality. But this immediately raises an ethical probJem:
that we should not hand out mem bers' names and addresses without their
permission beforehand - to do so would be a breach of privacy. So we will not be
issuing your address to anyone who asks for it! A much better solution, that should
be acceptable all round, would be if we publish the names and the like. of any
members who would like to organise club activities in their local area, leaving other
members to contact them direct. So if anyone would like to organise something in
their locality, let us know fairly soon, so that we can assemble a 'Contacts' list for the
next issue.

Disassembly and development
Serious programming work - in which I include serious games programming! -
needs practical tools, and we do have access to most of the tools and information
here if members need it. But one of the main tools, the disassembler, presents with
another ethical problem: that of copyright. Computer copyright law is a shambles at
the moment, but even so, it is clear that both Microsoft and OSI would get more
than a little upset if we published the source-code of their major works. And a
disassembly of ROM-BASIC, for example, occupies the best part of 5000 lines of
code, or well over 100 pages of printer listing - not a minor item. For reference
purposes only we do hold disassemblies of ROM-BASIC, EXMON, assembler
(cassette and disc versions) and various ROM monitors, and we intend to extend this
to cover the other major software like disc BASIC and OS-65D and -65U. We can
handle specific enquiries, but be warned - we're only doing this in our minimal
amount of 'spare' time, so don't expect a speedy response!

Planning cards
In last issue's Notes I mentioned the idea of producing write-on/wipe-off planning
cards, to cover a variety of needs. Several people wrote in to say they were
interested, so these are now being prepared, to be printed just after this issue goes
to press. You'll find a list/order form as a loose insert in this issue; the price of 50p
each, to members only, is as low as we dare make it - you'll also find them in the
computer shops later on, and at a rather higher price I The designs we've done so far
would seem to cover most general needs - video planning, opcode lists, hex-dee
conversions, program planning- but no doubt there will be others. If you can think
of other card designs that would help, let us know. And we'll also be issuing some of
the designs as pads, for more permanent records.

Small ads?
At the moment we have no advertising, but since these Notes and the Dealer
have moved to this pull-out-able section, advertising becomes practicable. You'll
see a comment in the Dealer Notes about the general advertising cost - but wou

members like a ' small ads' section , to advertise their odds and sods? A realistic price,
given our production costs, would be about 2p per word, with a minimum charge of
£1.00. This, with the deal e rs' advertising , would help pay for a bigger issue -your
comments, please?

.. . and a small ad!
User group organi ser Richard Elen wants to sell his E1ektermina/-based serial
terminal. Compl ete with George Risk ASCII keyboard and T-hompson-CSF video
driver to drive either a video monitor or TV, it's currently used to dri.ve Richard 's C2
system ;· but he' s replaced the terminal with the 540/542 standard C2 video-and
keyboard combination . Richard would like around £100 for it; more details from
him at the Group 's London address, 12 Bennerley Road, London SW11 60S.

Dealer Notes

We're glad to note an increase in the number of dealers for both OSI hardware and
OSI-compatible software. We've listed below all those new dealers (new to us, at
least) whose addresses we've found in the magazines and the like; where we've
been able to get in touch with them, we've also included some details of what they
are doing. As before, they are in no particular order!

Mighty Micro, 33 Cardiff Road , Watford, Herts . Tel: (0923) 38923.
Mail order section: P.O. Box 17, Basingstoke, Hants. Tel: (0256) 56417.

A consortium formed by Watford Electronics and Videotime Products (and possibly
Lotus Sound?) to handle the computing side of their business . Deal mainly in
Superboards , but also sell other OSI kit such as the C4 (currently in stock!) . Also
peripherals like the SuperPrint 800 (alias Base-2) printer and Softy firmware
development kit. Probably the largest volume seller of OSI - low prices offered as a
result!

Simple Software Ltd, 15 Havelock Road , Brighton , Sussex BN1 6GL.
Brighton (0273) 504879.

Best known for their Microcase ABS cases for Superboard, Compukit and others;
but actually in business to sell software! Limited range of (low-priced) ·software is
currently being expanded . (They sent us a sample tape , which we'll review next
issue).

Velvet Software, 26 Colesbourne Close, Worcester WR3 9XF. Tel: 056 885 453.

Range of tape software for Superboard/C1 and UK101 (Startrek to be reviewed next
issue). Also set of peripheral interface kits for those systems, for reed relays, parallel
ports and programmable sound generator kit with all facilities is under £50.
(Would any member using this unit care to send us a review? - it sounds interesting
and well priced) .

J.M. Electronics, P.O . Box 71, Norwich NR6 7JE. Tel: (0603) 412222.

Tape s,oftware , particularly for UK101, mostly games and priced from around £3 to ·
£7. Software publisher - keen to publish any good software for UK101 and
C1/Superboard (also Apple) . Also disc system under development for UK101 -
should be ready by the time this issue goes out. S.A.E. appreciated with enquiries!

Philbrand Associates, Great Oak Hou se, 2 Albany Close, Esher, Surrey KT10 9JR.
Tel: (0372) 62072.
Large systems for business use C8-P upwards . Specialises in word-processing
systems based on C3 and Word star software .

Millbank Computers , East Lane, Kingston upon Thames, Surrey .
Tel: 01-549 7262.

Specialist in business systems, using C8-P upwards . (Parent of Phi/brand Associates?)

Beaver Systems, Norlett House, Dormer Road, Thame, Oxon OX9 3UC.
Tel: Thame (084 421) 5020.

Advertise full 'personal' OSI range -- Superboard to C4; also games software for OSI
range, and for UK101 and TRS-80. (No further deta ils as yet).

Easicomp, 57 Parana Court , Sprowston, Norwich.
Tel: (0603) 407923, also (0508) 46484.

Superboard and own-cased Superboard In particular; also software for Superboard,
and Pet, Nascom, Research Machin es. Commissions and pub lishes software. (No
further details as yet) .

New systems
It's nice to see that we haven 't had a repeat of the Superboard saga with the new C4
- it arrived less than a couple of month s after It was first advertised, and several
buyers already have them in this country . There still seoms to be a little trouble with
the PAL colour conversion s (dealers would definite ly like membe rs with colour
implementations for any OSI kit to contact theml), but apart fro m that the new
machine is very neat indee d, and well worth the small extra abo ve the old C2 price . I
haven't been able to play with one In detail; but the amount of built-in 1/0 ports
and the like will make all sorts of specialist Interfacing very easy, and the disc system
works out at the same price as an App le without a disc . All right, the Apple has better
colour handling and finer grap hics (although a dot -addressa ble graphics card for
the OSI bus is on th e way, I'm to ld) - but have you seen the price Apple charge for a
single RS-232 por t?

There is another version of the Superboard (Supe rboar d Ill?) now on release in
the States, but we 've no deta ils as yet. And also on the way, in the bigger league, are
two new hard-disc system s, th e C2-D and C3-D. These are esse ntially the same as the
existing C2-OEM and C3-O EM (I.e. 48K RAM, twin 8" discs, and 6502 or triple
processor board respectively) , but rep lacing one of th e floppy drives with a built-in
10 Megabyte hard-disc (Shugart , I think). Pricing is interesting: it's likely to be
around a thousand quid cheaper than Its nearest equivalent , Cromemco's Z2-H.

Wheeling and dealing?
Various things have been going on on .the dea ler front , in relation to the UK dealers '
somewhat tortuous relationship with OSI, and between the UK dealers themselves.

The relationship between OSI and the UK dea le rs is 'estranged' - as far as I can
work it out, no-one - strictly speaking - is an 'official dealer'. OSl's official
European distributors are ADHOC; but their original terms for UK dealers (trade
terms in the UK, before shipment or Customs duties, were slightly higher than

l .

American domestic retail prices), none of the original UK dealers are willing to buy
from them, although some of the newer dealers are apparently doing so. (If you
thought their price s were high , look at what ADHOC are getting away with in France
and Germany: French pr ices are nearly twice ours, and German ones are almost
three times - so it's no wonder that one dealer said that a French customer flew
over especially just to buy a Superboardl) ADHOC are stiH trying to pump life into a
promised maintenan ce service company ; but they 've withdrawn their European
manager from London when last we heard , so it's unlikely that much will come of it.
In case you 're wondering where the UK dealers get their systems from, it seems that
they have two options : some, like Mighty Micro and Mil/bank , have managed to
bypass ADHOC's 'official distributorship', and seem to be buying direct from OSI;
while others , like CTS and Mutek, buy from the Amer ican wholesale market , and
apparently at much the same price as buying direct from OSI, with immediate
availability too .

The other matter in hand is a certain amount of wheeling and dealing between
the UK dealers - with the intent of helping everyone, dealers and customers . A
kind of 'dealers' convention ' held in May at the instigation of Bill Unsworth of U
Microcoinputers set up an agreement whereby dealers are sharing technical notes
and, to a certain extent, software; they're also covering each other for emergencies
when one dealer urgently needs a board, for example . I gather there was also a
certain amount of 'price-fixing ', but on the whole these have been rounded down
rather than up! But with the removal of any real threat of a price-war between
dealers, they can settle down with more certainty to develop specialities of their
own, and, we would hope, to offer a better and more local service network It'll be
interesting to see how this all develops .

The User Group has an important part to play in all this, incidentally . The dealers
recognise that OSl's documentation is so poor that a complete rewrite is necessary,
and have asked us to co-ordinate the collection of any notes with a view to
producing proper documentation . At the moment they're particularly keen on
producing notes for DMS and OS-65U on the larger systems - so we'd appreciate
any notes and comments on these from any members using them .

Advertising

At present there is no advertising in the Newsletter - and I have no doubt that many
members would prefer to keep it that way. But the increasing size of the Newsletter
- which I presume, again, that most members would prefer - is sending our pro
duction cost for each issue much higher , and only just within the Group's current
budget. We have moved the Group Notes and Dealer Notes to the middle of the
Newsletter , as a pull-out section: and if we are to have any advertising, that is where
it should be, since it can then be thrown away when it is no longer relevant. And we
now have enough of a readership to make specialist advertising worth while. So I
would like to know from members whether they feel that advertising , in a pull-out
section , would be acceptable (to prevent us having to push up our membership
fees!); and whether members and/or dealers would be interested in advertisin
their wares in the Newsletter. Assuming that artwork was supplied, a rate of £40 per
page (and pro rata for half and quarter pages) would be realisticfor us, and we hope
for advertisers as well. (You could see it as subsidising our good works, perhaps . . .).
Your comments , please - and any takers?

OSI for UK dealers, and with the major UK dealers now working together more we
should soon see some dramatic deve lopments in terms of availability and backup.
Our dealers in the UK have really pulled the ir fingers out and are doing a great job of
handling the equipment : soon it shou ld be even better.

I also picked up copies of some new publications related to OSI gear. TIS, well
known for their PET literatur e, have prod uced a book called The C1 Workbook . This
is a great guide for beginn ers and exp lains not only BASIC, but all the vagaries of the
C1/ Superboard . New from a Californian publishe r called Elcomp is The First Book of
OSI, Vof.1. This book , culled pr imar ily from OSl's technical news-sheets, enquiries
and information from Aardvark Technical Services (who published what must be an
earlier version of this - Ed.), lays out a lot of useful information on the machines.
The first volume covers mainly C1 and C2 infor mation , including discs. Although
there is a lot of inform ation there , and it is well indexed , there is a certain
unpredictable quality about the articles : they are prese nted in no real order , but
there are some real ge ms among them. O ne exa mple is a simple BASIC program
which POKEs machine code into the top of memo ry to clea r up the bug in OSl's
BASIC-in-ROM string- space houseclea ning routine, making string usage a little less
annoying. I've tested it, and it work s; we' ll print it for you shortly . Also given is the
hardware mod to give the C1/ Superbo ard a 54 character by 32 line display. Some
UK dealers are already offer ing this mod ; if you fancy doing it yourself , the
information is in the Elcomp book . Two volumes are to follow : Volume2 details the
' higher-level ' DOS systems, OS-65U et al., and the WP-2 word processor ; and
Volume 3 will cover interfacing and how to hang your own things on the end of OSI
machines and boards .

Another useful arr ival is the publication of three Howard Sams service manuals :
one for the C1 (which also serves the Superboard and includes discs); one for the C4
(which will also cover the C2, and , once again, the minifloppy systems); and one for
the CJ. The latter book also includes data on the 470 Disc-Controller board ; so if any
of you have been thinking of upgrading a C2 with the 470 board, to retain the
BASIC-in-ROM with disc expansion (it' s faster than OSl's disc BASIC), you ' ll need it.
The three manuals are all reasonably priced and give clear , colour-coded diagrams
and photos of the board layouts , plus full se rvicing and testing details . A must if
you ' re into the hardwa re side of your machine.

All these publi catio ns are currently be ing ordered from the US and will hopefully
be made available to members in the near future .

(Ed. - I hate to sound cynical, but we seem to have heard a lot of those promises
from OSI before : better service , better deal for the UK market, freer supply of
information , and so on . OSI aren 't exactly an open company - most members
probably don 't know that it is OSl's company policy to refuse to answer phone calls
from anyone other than a very select group of dealers. So I' ll only believe those
promises when we start to see hard results . .. and if anything really does happen in
the next three months , we'll let you know in the next issue!)

,,I

BASIC program interpretation
Court esy of Aardvark Technical Services

(The description that follows is derived from Aardvark's BASIC Notes; it applies in
particular to OSl's ROM BASIC Version 1.0 Revision 3.2-- the 'BASIC-in-ROM -
but also in general to Microsoft 's 6502-series BASICs. Addresses and values given are
those for the BASIC-in-ROM , and are in hexadecimal unless otherwise stated).

A good place to start exploring is the warmstart entry at A274. BASIC can also be
warmstarted by a jump to 0000 - where the system puts 4C/ 74/ A2 during the
coldstart sequence . In warmstart, BASIC is looking at the keyboard, waiting for
immediate-mode commands or BASIC instructions with line numbers to be
entered .

yes

no

Flowchart s of warmstart
(left) and main BASIC
execution loop (right)

(A3 A6)

immediatei
mode
fromwarmstart

to
A5F6

no.

(A5F6)

no

RETURN

See the warmstart flowcl1art . BASIC first clears the ctrl-O flag (LSR $64 clears the
flag - the top bit of 64) to allow printing ; invokes the message printer at A8C3 via an
indirect call through 0003 to print th e 'OK' message -the A and Y registers hold the
low and high bytes of the messa ge's addr ess, and the message ends with a null. (The
'OK' itself is stored at A 192, 3). Now the 'fill the input buffer' routine is called. This
routine (at A357) inputs from eith e r keyboard or ACIA, via the vector at FFEB, and
depending on whether the top bit of the LOAD flag (0203) is clear or set respec
tively. The ' fill buffer rou tine' keeps a co un t of the characters in the X register, stores
the characters in the input buffer (13-SA in th e zero -page - hence the limit of 7210

characters on inpu t), handl es the ve ry limited 'e diting ' functions of false-backspace,
and line delete (with a); chec ks for the 'no- print ' code ctrl-O ; and ends the input on
a CR, jumping to A866. This places a null at th e end of the buffer instead of a CR, and
then runs on into th e CR/LF ro utine at A86C, wh ich also ' hangs around' for any extra
nulls that the system finds in OD. (Nulls are put in the output stream after CR/ LF, if
needed for a slow devi ce, by placing the number of nulls in OD. This normally
defaults to 1010, and is chang ed by a POKE 13, n or a NULL n command (the latter
vying with CLEAR for OSl 's most idiot ic BASIC command , since it doesn 't do what is
expected of it at all - see Documentation Corner in this issue!).

Study the flowchart for the A357 routine for how this works . The same routine is
also called by the INPUT routine .

There exists a vital routine callable at 00BC (the code for which is copied during
coldstart from BCEE-BD05 in ROM) that puts the next character in the current BASIC
line being worked on into the accumulator. The routine is sometimes referred to as
CHRGET; the current character may be pulled into the accumulator by calling 00C2
rather than 00BC, as CHRGOT. The BC routine jumps overand ignores any spaces ,
and also sets the carry flag if the character being passed is not numeric , for the
information of the routine that called this subroutine. The address of the current
character is in CJ, C4 - the address portion of an LDA instruct ion . All the main
routines use the BC subroutine to find out what's next ; (CJ) is constantly being
changed by the users of the subroutine , in addition to being incremented by the BC
version of the subroutine each time it is called.

During the warmstart sequence , the BC routin e is used to wor k through the ASCII
in the input buff er as it is tok enised. (C3) is set by the call to A866 to po tnt to the input
buf fe r. If th e first character Is numeric, the buffer must co ntain a numbered line of
BASIC so urce code, so the routine jumps to A295 to do the 'tokenise and store in
BASIC work space, updating necessary pointers' job on the input buffer. If the first
character is no t numeric, the statement Is assumed to be imme diate-mode , A3A6 is
called to tok enise the buffer , leaving the tokenised line in th e buffer ; the routine
then jumps out of the warm-start loop toASF6, the main entry to the 'execute BASIC
statements' loop .

At A5F6, the 'execute BASIC statements' loop calls the BC subroutine to check if
the next charact er In the current line Is a nu ll (i.e. in immediate mode, just a CR in
the buffer). If it's not a nu ll, It must be a BASIC co mmand , so the loop then jumps
back to its beginni ng at ASC2. When a program is RUN (from the beginning), the
command RUN is executed as a BASIC statement, calling the RUN routine at A477 .
This a) points (C3) to the contents of the (79) pair , pointing to the beginning of
BASIC workspace (set to 0301 by th e co ld-sta rt routine) ; b) resets the string pointer
pair (81) to the top of memory as record ed in th e (85) pair ; c) resets the array pointer
to the end of BASIC progr am space as pointed to by (7B) - so all array, variable and

The 'input and fill
buffer' routine
(A357)

yes

yes

ENTER

!J',

!jeS

(A866)

echobell
yes - G)

string pointers are reset to their start positions; d) the stack pointer is reset to FC,
which on return from that subroutine·means that it is pointing at 01FE e) a 00 is
stored in 008C and 0061 (we're not yet sure why); andf) a$68isstored in 0065 (again,
we're not sure why, but it probably has something to do with $68 being the opcode
for PLA, pull the accumulator value from the stack). On returning from the RUN
routine, the program jumps to A5C2, the start of the 'do the next BASIC line or
statement' loop. See the 'main BASIC execution loop' flowchart. .

Starting at A5C2, the program first does a ctrl-C check, calling the subroutine at
A629; if ctrl-C is found, execution stops, printing 'BREAK IN LINE (contents of the
(87) pair) before returning to the warm-start , loop_ If ctrl-C is not pressed, the
program checks to see if the next character of the line is a null (the beginning of a

new BASIC line) . If it isn't, and if it isn't a ':' to indicate an additional statement in this
line, the program jumps to the syntax-error printer, and returns to the warm-start
loop. If the next character is a null, the high byte of the pointer that follows it will
have a null also if the line just executed is the last in the program. If this is found, the
program returns to warmstart. Oth e rwise, there must be another line of BASIC: so
the program picks up the line number and stores this in the (87) pair, and then
increments the (CJ) pointer past the 'next - line-is-at ' and line-number pairs to point
at the first program character of the BASIC line. (If the last character looked at was a
':' rather than a null, the program would have jumped to this point). The next
sequential instruction in ROM is at A5FC, which is where we came in with the
immediate-mode statement RUN.

As mentioned earlier , ASFC calls the BC subroutine to check for a null; if not a
null, it calls the subroutine at ASFF to do the actual work of executing the BASIC
statement that it finds in the line, before returning to the start of the loop at ASC2.

A5FF calls the BC subroutine and checks to see if the first character is greater than
8016• If not, it is not a normal 'token' for a BASIC command, and it is thus assumed to
be an implied LET command . In this case, the token for LET is inserted, to call the LET
subroutine at A789. This then calls AD0B , a very important subroutine that finds the
name of the variable to be assigned by the LET, finds its address · in the variables
storage space, puts that address in the (95) pair , and also leaves the address in the A
and Y registers. In this case the LET routine at A789then stores the variable's address
in the (97) pair, and checks for an'=' (using the BC routine, of course, to look for the
next character); if it doesn't find one , the program jumps out to the syntax-error
routine . If the '=' is found, the important subroutine AAC1 - the 'evaluate a_n
expression' routine - is called, which leaves the value from the expression in the
four-byte floating-point accumulator 00AC-AF. The LET routine returns by way of a
)MP to 8774, the 'store the floating-point accumulator at the address pointed to by
(97)' routine. Since the LET routine was itself called as a subroutine, the sequence
ends with a return to the top of the 'execute BASIC statement' loop at A5FC, which
restarts the sequence again at the beginning (at ASC2) with the ctrl-C check .

If A5FF does find that the first character is greater than 80(16)the character is a
token for a BASIC command - presumably other than LET! The program then
checks that the token is an 'initial' one - a co mmand rather than a function or an
operator - by chec king that th e value of the token is less than 9C16 (the token for
TAB(, the first of the ' non -initial' tok ens). If the first character is neither an implied
LET nor one of the Initial tokens, the program ends via the syntax -e rror routine. If it
is an initial tok en, the program does a litt le jugg ling with the token's value
(explained below) to pick up the address for the re levant command 's subroutine;
then places the two bytes of this address on the stac k; and then jumps (rather than
calls) to the BC subroutine , so that the BC routine 're turn s' the BASIC command's
routine rather than to the routine which actua lly called it. The RTS at the end of the
BASIC command' s subroutine do es return to the origin.al calling routine -theA5FF
routine, so that th e program then loops round to look for another BASIC statement .
This juggling with th e stack Is a llttle complicate d, especially as the addresses placed
onto the stack (the apparent addresses for the co mmand routines) are all one byte
less than they should be - an RTS ·machine-code instruction adds one to the
address it finds on the stac k.

Tokens are functionally divided into three different groups: the 'initial words',
the commands, from 8016 (END) to 9B16 (NEW); the operators(+,-,/ and the others)
and a few assorted functions like TAB(, THEN and STEP, from 9C16 to AC,6 ; and the

The 'execute BASIC statement'
subroutine (ASFF)

SN
ERROR

EXIT

warm start

no
must be

implied LET

functions, from AD16 (SGN) to C316 (MID$). The addresses for the commands are
found by ignoring the top bit of the token (so that FOR's token 8116 becomes 01(16)
for example) and then doubling it with an ASL A opcode; a TAY opcode then
transfers this to the Y register; the address is then picked up by the machine-code
commands LOA (AOO0),Y: PHA: LOA (A001),Y: PHA, leaving the routine's address
(minus one!) on the stack, for the 'return' at the end of the BC routine to find. Ther e
are twenty-eight 'initial' tokens; their addresses thus occupy the first fifty-six bytes
in the table, from A0OO to A037.

The next group stored in the table is not the operators, but the functions. These
are called within the execution of the main BASIC commands, or rather by the
'evaluate an expression' and similar routines, and are processed by a subroutine at
AC27. Much the same technique is used to get the address, using the ASL, TAY
technique to double the token number (with high bit ignored) and point to the right
pair of addresses in the table. The ASL is atAC27, the TAY atAC55; but the addresses
are the true ones, not 'minus-one', because they are stored in memory rather than
on the stack. The program stores them at00A2,A3, and jumps to them by doing a JSR
OOA1 - a 4C (JMP) opcode being placed there by the cold-start routine, so th
whole thing works out as a rather neat 'JSR indirect'. A confusing point here is that
because there is a 'gap' in the table - the addresses for the operators' tokens have
been skipped - the doubled token value is added not to A000 but to an invented

base address of 9FDE in order to pick up the token 's addresses. The address table for
the function subroutines is stored from A038 (SGN) to A065 (MID$).

The reserved words, with the top bit set on the last letter of each, are stored in a
table beginning at A084 , and the error messages are stored in the same way (hence
the odd graphics for the second letter of error messages on video systems) along
with other assorted messages like ERROR and BREAK in a table that follows the
reserved-word list from A164 to A7A0. But there is an odd gap between the end of
the function address table and the reserved -word list - and this turns out to be an
odd list for the operator s. .

The first batch of operators, from 9C16 (TAB) to A216 (STEP) are called only within
one command routin e, and thus need no subroutines of their own . But the others
do have their own subroutines ; but the table stores three bytes for each , not two -
the first byte being some kind of constant whose function we haven't yet
deciphered. The addresses shown for each of the arithmetic and logical operators,
from A316 (+) to AC,6 (<), are co llected in the same way as for the commands, by
placing them on the stack; the addresses in the table are thus again one lower than
the actual address of the relevant subroutine for each .

The following table , which summarises all this , sho uld give you some indication of
where to point your disassembler in the next stage of disentangling OSl's BASIC!

BASIC-word BASIC k d Token Subroutine Location
location eywor O en location in table

A084 END 80 A639+1 AOOO
A087 FOR 81 A555+1 A002
A08A NEXT 82 AA3F+1 A004
A08E DATA 83 A70B+ 1 A006
A092 INPUT 84 A922+1 A008
A097 DIM 85 AD00+1 AOOA
A09A READ 86 A94E+1 AOOC
A09E LET 87 A7B8+1 AOOE
AOA1 GOTO 88 A6B8+1 A010
AOAS RUN 89 A690+1 A012
A0A8 IF 8A A73B+ 1 A014
A0AA RESTORE 88 A619+ 1 A016
A0B1 GOSUB 8C A69B+ 1 A018
A0B6 RETURN 8D A6E5+1 A01A
A0BC REM 8E A74E+ 1 A01C
A0BF STOP 8F A637+ 1 A01E
AOC3 ON 90 A7SE+ 1 A020
A0CS NULL 91 A67A+ 1 A022
AOC9 WAIT 92 8431 + 1 A024
A0CD LOAD 93 FFF3+1 A026
A0D1 SAVE 94 FFF6+1 A028
AODS DEF 95 AFDD+1 A02A
A0D8 POKE 96 8428+1 A02C
AODC PRINT 97 A82E+1 A02E
A0E1 CONT 98 A660+1 A030
AOES LIST 99 A4B4+1 A032
AOE9 CLEAR 9A A68B+1 A034
AOEE NEW 98 A460+1 A036

A0F1 TAB(9C (none)
Designs on OEM

A0FS TO 9D (none) - or how to dedicate your Superboard

A0F7 FN 9E (none)
A0F9 SPC(9F (none) A string of fairly random comments and discussions with dealers and with one of our

A0FD THEN AO (none) members who uses Superboards as weighing-machine controllers started me

A101 NOT A1 (none) thinking along these lines-that the Superboard can be modified surprisingly easily

A104 STEP A2 (none) to work as a process controller in applications where BASIC is fast enough for the

A108 + A3 B46E+1 A067 job.

A109 - A4 B457+1 A06A This is not as daft as it sounds. Sure, a Superboard costs a lot more than, say the

A10A • AS B5FD+1 A06D Acorn as a process controller; but designing and implementing a control program
A10B I A6 B6CC+1 A070 that takes more than half a dozen factors into account is no joke in machine-code,

A10C ^ A7 BAB5+1 A073 especially if one of the factors is collecting operator input . Hardware is soft, software

A10D AND A8 AC68+1 A076 is hard .- as the expression goes - and anything that is hard is expensive. For many

A110 OR A9 AC65+1 A079 applicationsapplications, the relative simplicity of software design in• BASIC easily recovers the

A112 > AA BAEE+1 A07C higher initial cost of the hardware.

A113 = AB ABD7+1 A07F So how can this be done with the Superboard? The answer, of course, is to start at

A114 < AC AC95+1 A082 the beginning - in this case the 6502's reset vector - and throw away anything

A115 SGN AD B7D8 A038 which is not actually needed for the job .
On reset, the existing monitor jumps to the message 'D/C/W/M' - of which we

A118 INT AE B862 A03A can presume that a small controller will be needing neither discs nor user-access to
AJ1B ABS AF B7F5 A03C any machine-code monitor. This leaves Cold or Warm start for BASIC. It should not
A11E USR BO 0OOA A03E be difficult to implement a hardware 'power-on reset', leaving the 'reset', as far as
A121 FRE 81 AFAD A040 the user is concerned, to be a direct warm-start to the BASIC program rather than a
A124 POS 82 AFCE A042 choice of entry to cold or warm start. The existing vectors for cold and warm start are
A127 SQR 83 BAAC A044 to 8D11 and 0000 respectively.
A12A RND 84 BBC0 A046 The trick here would be to duplicate the functions of the existing cold-start
A12D LOG 85 BSBD A048 routine without bothering with the existing user-defined calls for memory~size or
A130 EXP B6 BB18 A04A terminal width - since these will be predetermined by the application in hand
A133 cos 87 BBFC A04C rather than the operator's whims. As long as your new routin e (presumably held in a
A136 SIN 88 BC03 A04E replacement for the existing monitor ROM) does everything that the existing cold-
A139 TAN B9 BC4C A050 I

start routine does, setting up the various flags and limits like memory size, and
A13C ATN BA BC99 A052 finishes by placing the warm-start vecto r in 0007, 02, a new entry with your own
A13F PEEK BB 841E A054 messages is practicable. The other vector that BASIC wants is a warm-start one,
A143 LEN BC B38C A056 stored in 0004, OS by the co ld-start routine. In the exist ing system this points to the
A146 STR$ BD B08C A058 message-printer routine at ABC3, In order to print tht; 'OK' message on warm-start;
A14A VAL BE 838D A0SA but there is no reason why It shou ld not be reset by a new cold-start routine to point
A14D ASC BF B39B A0SC somewhere else, such as a direct RUNnlng of a BASIC program in EPROM.
A150 CHR$ co B2FC A0SE There is space on the board, and the address decoding, for up to 6K ofadditional
A154 LEFT$ c, 8310 A060 PROM - if you know where to look. The board has been designed to handle a
A159 RIGHT$ C2 833C A062 single 8K BASIC chip as we ll as the existing four 2K RO Ms; the address decoding for
A15F , MID$ C3 8347 A064 the 8Kchip goe s to the last of the four ROM sockets. There is also a chip-select line

on the schemati c that Is described as 'no t-BAS', and a pp.ears to select the other three
sockets independ entl y of the fourth. By Inserting a small board with four sockets
into the last BASIC socket, and moving the BASIC ROMs up to it, changing the
board links accordingly, would free the other , three sockets for three additional 2K
PROMs - enough for a 61< BASIC program. It does not seem possible, though to
replace the 2114 RAMs with EPROMs - to my knowledge there is no pin-
compatible EPROM.

Designing BASIC software to go into an EPROM should not be too difficult. The
I

only tricky point is that the BASIC pointers for variables , arrays, strings and the like
all point above the program space. If the existing BASIC is to be used , any scratchpad
RAM for BASIC use will have to be above the program. This means that the program
will have to end on the boundary of a PROM, or else variables and the like will be
lost by trying to write into the PROM space instead of int.o the RAM above. This is
easily solved , though , by 'padding out ' the final program with REM statements. For
the same reason , it would also be sensible to reset the start of BASIC program space
(currently defined , by the existing cold-start routine , at 0301, preceded by a null) to
a higher page boundary on the boundary of a ROM, such as at 0400 or , more prac
tically, at 0800, during the new cold-start routine .

A detailed study of the existing cold-start routine from BD11 to BE38 should clarify
most of the problems involved in designing software / firmware for OEM
applications . Let us know how you get on I

Disc System Notes

A warning on hard discs

Tom Graves

Hard discs sound like a really nice idea - enormous mass memory that ' s fast
enough to use as RAM. But there's an old saying about all your eggs in one
basket' . . . - in other words reliable back-up . Since the whole point of hard discs is
that they are enormous and fast, any back-up system is thus , by comparison , small
and slow. But back-up is essential - don 't skimp if!

A nastier problem also arises for UK users of hard discs, regardless of make of
either hard disc or computer system. If, or rath er when , they develop any sort of
fault, they cannot be repaired in the UK. They have to be disrhantled in a special
'clean room ' -and the nearest one is in Muni ch . . . while most , of course , are in the
States. Shugart , we're told , intend building a ' clean room ' he re sometime , but
there's no definite date as yet. Sending the disc to the States mean s a long ,
expensive, disc-less wait - and unless you've done that back-up that you should
have done, you ' ll be without your vast d,ata-base too , since that , of course , is on th e
disc ...

OS-CP/M - an assortment of errors
The early versions of OS-CP/M had their assorted bugs , as can be expected ; th e
trouble is that the newer versions have newer bugs . The COBOL implementa t ion
apparently still doesn 't work (but I'm told that it's not all that unusual for COBO Ls to
crash). There are, however, other errors 6f a more common kind.

1

The May '80 issue of Dr Dobbs Journal (Vol.5 No.5) had an article and a lette r
pointing out several of these problems: One is a problem with TAB (as CHR$(9),
ASCll's HT command); but more serious are the two bad 1/0 bungles. The first is
that the serial ports starting at CFOO (the multi-user 550 board) are initialised
correctly on boot-up by the track-0 routine , but are then 'clobbered' by part of the
loading sequence for CP/M - the system locks up if any attempt is made to use
those ports . The other and even more stupid error is that OSI made no allowance for
the fact that the Microsoft Altair BASIC's IN, OUT and WAIT commands arewritte l{! .
to use the Z-80's parallel ports. But the C3 doesn 't have parallel ports ; it uses the
6502's serial ports (the ACIAs) instead ; so these commands lock up - not surpris-
ingly - in trying to pass parallel information through serial ports!

:: : I

The article in Dr Dobbs describes fixes for these and a few other problems - so
get hold of a copy while you can . The series of articles on C and tiny-C in that issue
are interesting, too.

65U - POKEs about INPUT
We had a note from SJC Fox of Microco de (65 Landswood Park, Hartford, North
wich, Cheshire) about some useful POKEs in 65U. He writes:

POKE 2972,13: POKE 2976,13 e nables BASIC to input a complete line, commas and
all. Values of 58 (ASCII :) and 44 (ASCII,) respectively restore the normal operation
of INPUT. This came from one of OSl's programs - DMS I think.

POKE 2888,0 disabl es the brea k on carriage- return-only in INPUT and returns a
null to string input s and 0 to numeric Input s. A value of 27 restores the normal
behaviour. This is my own modification of an OS-65D POKE and appears to have no
bad side effects .

Following on from last issue's notes on date stor age in 65U, does anyone know of
any other 'empty ' areas that can be used as permanent storage? And does anyone
know of a POKE to simulate ctrl-D in 65U (the'o ne page at a time ' effect) , and ctrl-W
to clear ctrl-D?

65D (V3.1) - 1/0 distribution
For users interested in writing their own 1/0 routines , we found a note from OSI
that describes the look-up tables for the input and output routines . The input and
output routines are selected by bits being set on a flag byte (at 8993 for input , 8994
for output - both locations decimal). 65D collects the addresses of the chosen 1/0
subroutines from a table (from 2301-2320 16) , shown below. Note that the stored
'address' is always one lower than the true address of each routine . The system uses a
' stack trick' to reach the routine, like BASIC-in-ROM's way of collecting its
commands - see the article on BASIC execution elsewhere in this issue.

Flag (at 233716) Input table
Flag bit Addr . shows :
0 2301 F5 24
1 03 2A 25
2 05 17 25
3 07 85 23
4 09 88 2
5 OB AO 2
6 OD
7 0

Flag (at 2338(16)
Flag bit
0
1
2
3
4
5

6
, 7

C

Output
Addr.
2311

1
15
17
19
1B
10
1F

Subrou tine and address
Con sole serial port 24F6
Polled keyboa rd 252B
430 boa rd 2518
Null Input 2386
Memory 2389
Disk de vice 06 23A 1

lsk de vke 07 23FO
550 board (serial portsl 24B0

Subrouti ne and address
onso le serial port 24CD

440/ 540 video 2599
430 board 250D
lin e printer 249F
Memory 2390
Disk device 06 2382
Disk device D7 2403
550 serial board 24BD

s

65D - copying mini-floppies on single-drive systems
Another note from OSI purported to 'explain the proper procedure' for doing this
It doesn't, of course; it was clear (because the note wasn't clear) that if you followed
their instructions to the letter you would end up very quickly with an initialised -
and thus erased - original system diskette.

Since the procedure is obviously a little long-winded under 65D, would a member
with practical experience of this please send us a note on the true ' proper
procedure'?

65D - failure on write retry DONE
Another OSI note , this time a little clearer. A problem that apparently manifests
sometimes on both 5" and 8" floppy versions of both 65D V3.0 and V3.1 (the current
issue), manifesting as a system failure if a retry occurred on a write to disc. OSl's
notes cover the whole 'conversation', including all machine output ; we show only
the operator input, with any essential machine prompts (and comments) in italics .
Use a CR (carriage-return) on each line unless otherwise stated . From boot :

UNLOCK
EXIT
EM enter extended monitor , for use later
EX exit to DOS, but leave ExMon in language area
CALL 0200=01,2 diskette utilities : for mini-floppies CALL 0200=13,1
GO 0200
2 select track-0 read/ write utility
R4200 read track-0 into 420016 on
E
RET EM back to ExMon
a4886
4886/13 28
a4898
4898/00 4C (line-feed)
4899/6F 09 (line-feed)
489A/ 60 28
EX
GO 0200
2
W4200/2200,8 write new version into track-0
E
BASIC and exit to BASIC DONE
65D - fix for assembler 'hang-up' on C1/Superboard disc only
Another OSI note : to quote , 'the sequence below will correct the problem with the
assembler 'hanging up' on a CH-1P'. (OS-65D V3.0 and V3.1). After boot, unlock
BASIC, exit to DOS and call EM (ExMon). Then:

a1563
1563/60 9F (line-feed)
1564/ 15 24
EX exit to DOS
SAVE 061=1200/5

WRONG

CALL

420065

4'11 6
3 6 0 degrees

4200 06, 1

65D - fix for ExMon to print 6502's registers on breakpoint
Also from OSI, for V3.0 and V3.1, and evidently for mini and full floppies . Get into
ExMonafter boot, then :

!CALL 4700=07,1 for mini-floppy use !CALL 4700=10,1
a4B68
4868/ 88 C2
!SAVE 07,1=4700/ 9 for min i- floppy use !SAVE 10,1=4700/8
and exit as required .

65D - fix to permit random file access beyond 0383
Another OSI dealer - issue note, for V3.0 and V3.1. Enter ExMon after boot , then:

!CALL 4E79=08,4 for min i-f loppy use ICALL 4E79= 12,4
a4FOO
4F00/ 30 30 (lin e- feed)
4F01/ 16 65
a4F18
4F18/ AD EA (l ine- feed)
4F19/ 92 EA (line- feed)
4F1A/ 2F EA (line-f eed)
4F1 B/ 18 F8 (line-feed)
4F1C/ F8 18
a4F67
4F67/ 00 AD (line-feed)
4F68/ 00 92 (line-feed)
4f69/ 00 2F (line-f eed)
4F6A/ OO FO (line-f eed)
4F6B/ 00 AF (line - feed)
4F6C/ 00 f8 (lin e-f eed)
4F6D/00 18 (lin e-f eed)
4f6f / 00 AA (lin e- feed)
4F6F/ 0O A9 (lin e-feed)
4F70/ 00 00 (lin e- feed)
4F71/ 00 69 (lin e- feed)
4f72/ 00 01 (lin e-feed)
4F73/ 00 CA (lin e-feed)
4F74/ 00 DO (lin e-feed)
4f75/ 00 FB (lin e-feed)
4f76/ 00 FO (lin e-feed)
4F77/ 00 A4
EXIT
SAVE 08,4=4E79,1 for mini - floppy use SAVE 12,4=4E79,1

65D and WP-2 - fix for output problems
OSI note : corrects prob lem w ith (540 board) video based systems 'hanging-up'
under WP-2 wh enever an L comman d was given ; also corrects a general problem in
65D and WP-2 wh en outp utting to higher numbered devices. The problem surfaced
if a ctrl- C or ctrl -S was ente red while outputting to a given device and a higher
Jtumbered dev ice. The outp ut would appear ori the lowest numbered device , but
not on the high er nu mbered device. To install the fix, enter ExMon after boot, then:

!CALL 0200=01,2 diskette utilities : for mini-floppy use !CALL 0200=13,1
If changes are being made to WP-2, insert WP-i into drive 'A' at this point ,
!GO 0200 ,
2 select track-0 read/write utility
R4200 read track-0 into 420016 onwards DONE
RET EM return to ExMon
a4339
4339/ AD AO (line-feed)
433A/21 00 (line-feed)
4338/23 AD (line-feed)
433C/A0 21 (line-feed)
4330/00 23 (line-feed)
433E/F0 DO
a434D
434D/4A DO (line-feed)
434E/E8 22 (line-feed)
434F /90 E8 (line-feed)
4350/09 4A (line-feed)
4351/48 90 (line-feed)
4352/8A 09 (line-feed)
4353/48 48 (line-feed-)
4354/20 8A (line-feed)
4355/71 48 (line-feed)
4356/23 20 (line-feed)
4357 /68 76 (line-feed)
4358/ AA 23 (line-feed)
4359/68· (line-feed)
435A/E0 AA (lihe-feed)
4358/07 68 (line-feed)
435C/D0 DO (line-feed)
435O/EF F1
a4371
4371/0A 8C (line-feed)
4372/8D 78 (line-feed)
4373/78 23 (line-feed)
4374/23 DO (line-feed)
4375/98 D9 (line-feed)
4376/18 OA
!GO 0200
2 recall track-0 read/write utility
W4200/2200,8 write new version into track-0
E back to DOS
and exit as required.

Note : our typesetter has most but not aH ASCII characters: two substitutions have
to be made, namely a for the' at' character (ASCII 40(16)and □ for 'hash' (ASCII 23(16)

Copyright 1980 OSI UK User Group, unless otherwise stated.

I

l

